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Abstract
We study the relativistic Lee model on static Riemannian manifolds. The model
is constructed nonperturbatively through its resolvent, which is based on the so-
called principal operator and the heat kernel techniques. It is shown that making
the principal operator well defined dictates how to renormalize the parameters
of the model. The renormalization of the parameters is the same in the light-
front coordinates as in the instant form. Moreover, the renormalization of the
model on Riemannian manifolds agrees with the flat case. The asymptotic
behavior of the renormalized principal operator in the large number of bosons’
limit implies that the ground state energy is positive. In 2 + 1 dimensions, the
model requires only a mass renormalization. We obtain rigorous bounds on the
ground state energy for the n-particle sector of the (2 + 1)-dimensional model.

PACS numbers: 04.62.+v, 11.10.−z, 11.10.Gh, 11.15.Tk
Mathematics Subject Classification: 81T10, 81T20, 81T16, 81Q70

1. Introduction

The Lee model is a simple field theory model, which requires a mass, coupling constant
and wavefunction renormalization [1]. What is so special about the model is that the
renormalizations can be carried out nonperturbatively. This is, therefore, a good testing
ground for various new ideas and methods on interacting quantum field theories. In the
original Lee model, there are two fermion fields called N and V , assumed to be so heavy that
their energies are independent of the momentum, and a single relativistic real bosonic field
named usually as θ . The Lee model is amenable to exact analysis because there are two rather
restricting conserved quantities. One of which is the conservation of the total number of the
fermion species. Furthermore, the sum of bosons and N-type fermions is conserved. These
highly constrain the theory allowing only a finite number of particles to interact at any given
time. If we work with a complex scalar field, the situation changes drastically and the model
becomes rather difficult [2]. Although the renormalization is performed exactly, it is done
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so in a small number of particle sectors, and it is believed that the same prescriptions will
continue to cure the divergences in all sectors. This is, of course, plausible since there are no
other parameters in the theory. Once the physical V particle is determined as a composite, the
coupling constant is determined in such a way to make the scattering of N and θ finite, thereby
all the other physical processes should be well defined (see a source theory approach to the
model [3]). The model is asymptotically free for d < 4, and this point has been analyzed from
the modern point of view in [4, 5]. There is one subtle point; beyond a certain value of the
renormalized coupling there appears a ghost state. This problem has been analyzed recently in
the virtue of PT symmetry by Bender et al in [6]. They show that by an appropriate redefinition
of the norm, the ghost state can be turned into a physical state. Moreover in [7], an equivalent
Hermitian Hamiltonian through a similarity transformation is constructed in the context of
quasi-Hermitian quantum mechanics. Even though the model is defined nonperturbatively, to
understand the resulting spectrum remains largely as a challenge [8].

The model is sufficiently rich; by restricting the total number of fermions to one, we
can still get most of the interesting features. Moreover, one can assume that these fermions
carry no momentum so that they have no recoil, and hence assumed to be fixed at the origin.
This becomes equivalent to a two-state system sitting at the origin interacting with relativistic
real bosons [9, 10]. This is the version we will be working with so as to extend the model
to Riemannian manifolds. The nonrelativistic version of this model, which is worked out
beautifully in the book by Thirring and Henley [11], is still an interesting case study; yet in
this case the coupling constant and wavefunction renormalizations are not needed. The study
of the spectrum is still a nontrivial problem. To address these issues, there are some attempts
in the literature [12, 13]. In [14], while looking at some nonrelativistic problems which
require nontrivial renormalizations, Rajeev introduced a new perspective. In this approach,
one attempts to renormalize the theory by working out the full resolvent in the Fock space
of the system. The resolvent contains essentially all the information about the model. More
interestingly, the bound states can be found through the zero eigenvalues of an operator,
the so-called principal operator, which is parametrized by the energy in a nonlinear manner.
Although one can write the resolvent, it is not possible to write the quantum Hamiltonian of
the renormalized theory. In the restricted Lee model, since the interaction is at a point, the
renormalized model can be considered as a singular extension of the free bosonic Hamiltonian.
This is analogous to the attractive delta function potential in two dimensions, which requires
a coupling constant renormalization [15]. There, one could also write the resolvent but not
the corresponding Hamiltonian. The interaction appears as a kind of boundary condition;
this point of view originates from ideas of M G Krein on operators (see [16] for a modern
exposition). In [14], this point of view is extended to the nonrelativistic Lee model, inspired
from this work we develop the relativistic Lee model along the same lines. Having found the
principal operator, and thus the resolvent, we can, in principle, work out all the physically
important questions for all particle sectors.

Following the heat-kernel-based methods, developed in [17], we extend these ideas to
the case of manifolds. The renormalizations are the same; of course, the resolvent contains
information about the geometry through the heat kernel. The spectrum of the model is an
interesting problem; we only attempt to partially understand it for a large number of particles
and show that the ground state energy remains positive in this limit in 3+1 dimensions. In 2+1
dimensions, one can make more progress, and give a rigorous bound on the energy. Developing
new approximation methods for estimating the energy levels and scattering amplitudes remains
as a challenge.

The organization of the paper is as follows: in section 2, we will, first, construct the
model in flat spacetime through the approach, introduced in [14] without reviewing it. We
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show that the principal operator has a well-defined limit when the cut-off is removed, and the
renormalized operator can be given by the renormalized mass and the renormalized coupling
constant. Moreover, this limit determines the wave-function renormalization constant.
Afterwards, we specify how to impose the renormalization condition in this approach such
that we convert the renormalized mass difference into the physical one by fixing the finite
arbitrariness, which is left after renormalizing the parameters.

In section 3, we will apply the ideas, presented in [17], to the relativistic Lee model on
a general static Riemannian manifold. It is shown that the regularization of the ultra-violet
divergence in the theory can be established through the short-time expansion of the heat kernel
if the point interaction is introduced by a convolution of the bosonic field with a heat kernel.
It is found that the divergence structure of the model in the manifold case is exactly the same
as the flat case.

In section 4, we study the asymptotic behaviors of the renormalized principal operator in
the large number of bosons’ limit in both flat and manifold cases. In this limit, it is shown that
the leading behavior of the theory changes substantially. The ultra-static spacetime R × H

3 is
given as an example.

In section 5, we study the model in 2+1 dimensions. The advantage is that it is simple and
requires only a mass renormalization. This allows us to find rigorous bounds on the ground
state energy for the n-particle sector, thus illustrating the power of this method.

In the appendix, the same techniques are tested in an oblique light-front coordinates.

2. The relativistic Lee model in R
3+1

The model which we will construct in this section describes the interaction between a field
of relativistic bosons and a heavy fermionic source with an internal degree of freedom which
actually corresponds to two distinct states of the source. Since the source is heavy, we can
effectively consider it as sitting at some fixed point in spacetime. This results in the neglect
of recoil for the source, which means that the energies of the states do not depend on their
momentum [18]. The cut-off Hamiltonian of the model in a matrix form is given by

Hε = H0
[
χ+ ⊗ χ †

+ + Z(ε)χ− ⊗ χ
†
−
]

+ HI,ε, (1)

where H0 and HI,ε are the free and the interaction parts of the cut-off Hamiltonian, respectively,
and are given by

H0 =
∫

d3p

(2π)3
ω(p)a†(p)a(p), (2)

HI,ε = Z(ε)μ(ε)
1 − σ3

2
+
√

Z(ε)λ(ε)
[
σ+φ

(−)
ε (0) + σ−φ(+)

ε (0)
]
. (3)

The form of the above interaction Hamiltonian seems to be different from those widely exposed
in the literature at first glance. The θ particle in the Lee model is represented by the field φ, and
we are restricting the model to the total fermion number equal to 1-sector. Our choice for the
form of the coupling between N,V and θ particles can easily be obtained by the well-known
isomorphism between bilinear products of fermion operators and the Pauli spin matrices [19],
as well as the kinetic part of the fermionic sector. At this moment ε is an unspecified cut-off
prescription, the meaning of which will become clear when we will renormalize the parameters
of the theory. Here, φ(±)

ε (0) are the positive and negative frequency parts of the real bosonic
field, respectively, defined through this cut-off prescription. A more precise definition of these
field operators will be given in the manifold case. χ± in equation (1) are the standard spin
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states, which describe the two states of the system. Due to the fact that there can be various
divergences hidden inside the theory, we allow two states of the system to have different
normalizations. With hindsight we choose this to be the χ− state.

The theory has a conserved charge, which can be written as

Q = 1 − σ3

2
+
∫

d3p

(2π)3
a†(p)a(p). (4)

This means that the theory decouples into independent sectors as F (n)
B ⊗ χ+ ⊕ F (n−1)

B ⊗ χ−.
The construction of the model is merely based on finding the resolvent of the cut-off

Hamiltonian, which describes the system completely. While computing the resolvent, one
introduces the principal operator 
(E) that can be regarded as an effective Hamiltonian of
the theory. The reason that the Krein formula can be applied lies in the observation that there
is a constraining conserved quantity, namely, Q. The idea of using this operator comes from
the fact that the zero eigenvalues of it determine implicitly the bound state energies of the
theory. The ultra-violet divergence takes place in the theory when the size of the source goes to
zero, which causes the difference of the energy levels to become infinite. In the following, by
renormalization it is solely meant to search for a well-defined limit of the cut-off Hamiltonian
in a matrix form as ε → 0+. This is accomplished by curing the principal operator in the same
limit.

Following Rajeev [14], the cut-off Hamiltonian minus energy is given in a 2 × 2 block
form:

Hε − E =
[

H0 − E
√

Z(ε)λ(ε)φ(−)
ε (0)√

Z(ε)λ(ε)φ(+)
ε (0) Z(ε)[H0 − E + μ(ε)]

]
. (5)

The resolvent is simply the formal inverse of equation (5), and this inverse can be calculated
algebraically. If the Hamiltonian is parametrized as

Hε − E =
(

a b†

b d

)
, (6)

and if the resolvent is parametrized as

Rε(E) =
(

α β†

β δ

)
, (7)

then one ends up with the following algebraic equalities, which allow one to calculate the
resolvent:

α = a−1 + a−1b†(d − ba−1b†)−1ba−1, (8)

β = −(d − ba−1b†)−1ba−1, (9)

δ = (d − ba−1b†)−1 = δ†, (10)


 = d − ba−1b†. (11)

Equation (11) is just the cut-off principal operator and is given by


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

∫
d3p

(2π)3

∫
d3q

(2π)3

a(p)√
2ω(p)

1

(H0 − E)

a†(q)√
2ω(q)

}
,

(12)

where E is considered as a complex parameter, and the formulae below should be analytically
continued to their largest domains of analyticity. As one can easily note that the annihilation
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and the creation operator are in the wrong order with respect to normal ordering prescription,
so we should normal-order them. After being normal-ordered, the principal operator becomes


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

∫
d3p

(2π)3

1

2ω(p)

1

H0 − E + ω(p)

− λ2(ε)

∫
d3p

(2π)3

∫
d3q

(2π)3

a†(q)√
2ω(q)

1

H0 − E + ω(q) + ω(p)

a(p)√
2ω(p)

}
. (13)

The two fractions in the above fourth term can be united by a Feynman parametrization, and
then can be exponentiated as

1

ω(p)

1

H0 − E + ω(p)
=

∫ 1

0
dξ

1

[(H0 − E)ξ + ω(p)]2

=
∫ 1

0
dξ

∫ ∞

0
ds e−sω(p) e−s(H0−E)ξ

=
∫ ∞

0
ds e−sω(p) 1

H0 − E
[1 − e−s(H0−E)]. (14)

In order to evaluate the momentum integral one more identity is needed, and this is the so-called
subordination identity:

e−sω(p) = s

2
√

π

∫ ∞

0
du

1

u3/2
e−s2/4u e−uω2(p). (15)

With the help of that identity, we can convert ω(p) in the exponential into ω2(p) such that
after calculating the momentum integral the second term can be given by∫

d3p

(2π)3

1

2ω(p)

1

H0 − E + ω(p)

= 1

4
√

π

∫ ∞

ε

du
e−um2

u3/2

∫
d3p

(2π)3
e−up2

∫ ∞

0
ds s e−s2/4u 1

H0 − E
[1 − e−s(H0−E)]

= 1

32π2

∫ ∞

ε

du
e−um2

u3/2

∫ ∞

0
ds s e−s2/4 [1 − e−s

√
u(H0−E)]√

u(H0 − E)
. (16)

The use of that identity is to convert the divergence of the momentum integral into a divergence
emerging from the lower limit of the u-integral, which is now mollified by ε, explicitly. The
momentum integral is no longer divergent, and thus, can safely be computed. If the same
calculations are done step by step for the three fractions in the fifth term in equation (13)
without calculating the momentum integral, one obtains

1√
2ω(q)

1

H0 − E + ω(q) + ω(p)

1√
2ω(p)

= 2

π

∫ ∞

0
dα

∫ ∞

0
dβ

∫ ∞

0
ds e−ω(q)(s+α2) e−ω(p)(s+β2) e−s(H0−E)

= 1

2π2

∫ ∞

0
ds

∫ ∞

0
dα(s + α2)

∫ ∞

0
dβ(s + β2)

∫ ∞

0
du1

e−(s+α2)2/4u1

u
3/2
1

×
∫ ∞

0
du2

e−(s+β2)2/4u2

u
3/2
2

e−u1ω
2(q) e−u2ω

2(p) e−s(H0−E). (17)
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After plugging equations (16) and (17) into equation (13), the cut-off principal operator
becomes


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

32π2

∫ ∞

ε

du
e−um2

u3/2

∫ ∞

0
ds s e−s2/4 [1 − e−s

√
u(H0−E)]√

u(H0 − E)

− λ2(ε)

2π2

∫ ∞

0
ds

∫ ∞

0
dα(s + α2)

∫ ∞

0
dβ(s + β2)

∫ ∞

0
du1

e−(s+α2)2/4u1

u
3/2
1

∫ ∞

0
du2

× e−(s+β2)2/4u2

u
3/2
2

∫
d3p

(2π)3

∫
d3q

(2π)3
e−u1ω

2(q) e−u2ω
2(p)a†(q) e−s(H0−E)a(p)

}
. (18)

It is now time to renormalize the cut-off principal operator. If the exponential in the
second integral term is expanded in power series in s, one can notice that the only terms which
produce divergence are just the ones which are up to order s2. On the basis of this expansion,
one can redefine the coupling constant and the mass, whereby the cut-off principal operator
can, easily, be regularized. Thus, we are able to achieve the renormalized counterparts of both
those parameters and the principal operator. In order to accomplish this, it is appropriate to
divide the principal operator by the square of the coupling constant. The main difference of the
relativistic Lee model from the nonrelativistic one resides in not only that there is a coupling
constant renormalization besides the mass renormalization but also there is a wavefunction
renormalization. Therefore, the ratio of the principal operator to the square of the coupling
constant, 
(E)/λ2, should be renormalized instead of just the principal operator, 
(E),
in the relativistic Lee model. In the light of above discussion, one can renormalize whole
parameters of the model. The following choices regularize the principal operator by canceling
the divergences:

μ(ε)

λ2(ε)
= μR

λ2
R

+
1

32π2

∫ ∞

ε

du
e−um2

u3/2

∫ ∞

0
ds s2 e−s2/4, (19)

1

λ2(ε)
= 1

λ2
R

− 1

64π2

∫ ∞

ε

du
e−um2

u

∫ ∞

0
ds s3 e−s2/4, (20)

and then the principal operator is given by


ε(E)

λ2(ε)
= Z(ε)

{
(H0 − E)

λ2
R

+
μR

λ2
R

− 1

32π2

∫ ∞

ε

du
e−um2

u3/2

∫ ∞

0
ds s e−s2/4 1√

u(H0 − E)

×
[

1 − s
√

u(H0 − E) +
1

2
s2u(H0 − E)2 − e−s

√
u(H0−E)

]

− 1

2π2

∫ ∞

0
ds

∫ ∞

0
dα(s + α2)

∫ ∞

0
dβ(s + β2)

∫ ∞

0
du1

e−(s+α2)2/4u1

u
3/2
1

∫ ∞

0
du2

× e−(s+β2)2/4u2

u
3/2
2

∫
d3p

(2π)3

∫
d3q

(2π)3
e−u1ω

2(q) e−u2ω
2(p)a†(q) e−s(H0−E)a(p)

}
. (21)

We note that the subtractions in the second line resemble the regularization of the infinite
Fredholm determinants. This is analogous to the quantum effective action calculations via
regularized determinants in the path integral formalism. It is obvious that this operator has a
well-defined limit as ε → 0+ when both sides are divided by Z(ε):

lim
ε→0+


ε(E)

λ2(ε)Z(ε)
= 
R(E)

λ2
R

, (22)
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and the renormalized principal operator in terms of the renormalized mass and the renormalized
coupling constant can be given by


R(E)

λ2
R

= (H0 − E)

λ2
R

+
μR

λ2
R

− 1

32π2

∫ ∞

0
du

e−um2

u3/2

∫ ∞

0
ds s e−s2/4 1√

u(H0 − E)

×
[

1 − s
√

u(H0 − E) +
1

2
s2u(H0 − E)2 − e−s

√
u(H0−E)

]

− 1

2π2

∫ ∞

0
ds

∫ ∞

0
dα(s + α2)

∫ ∞

0
dβ(s + β2)

∫ ∞

0
du1

e−(s+α2)2/4u1

u
3/2
1

∫ ∞

0
du2

× e−(s+β2)2/4u2

u
3/2
2

∫
d3p

(2π)3

∫
d3q

(2π)3
e−u1ω

2(q) e−u2ω
2(p)a†(q) e−s(H0−E)a(p). (23)

It is easily seen that this limit also fixes the wavefunction renormalization constant Z(ε) to be
equal to λ2

R

/
λ2(ε). Now matrix elements of the resolvent can also be given in terms of the

renormalized principal operator. To see this, we look at the expression for α:

α = 1

H0 − E
+

1

H0 − E
φ(−)

ε (0)
Z(ε)λ2(ε)


ε(E)
φ(+)

ε (0)
1

H0 − E
. (24)

If we now use the wavefunction renormalization constant in this expression, we may take the
limit ε → 0+, giving us

α = 1

H0 − E
+

1

H0 − E
φ(−)(0)

λ2
R


R(E)
φ(+)(0)

1

H0 − E
. (25)

Similarly, for the others, we find

β = − λR


R(E)
φ(−)(0)

1

H0 − E
, (26)

δ = 1


R(E)
. (27)

These equations tell us that zero eigenvalues of the renormalized principal operator determine
the bound states and the corresponding energies as nonlinear eigenvalue equations. Note
that the renormalized operator 
R(E) converts a divergent linear problem in the Schrödinger
picture into a highly nonlinear but a well-defined problem.

It is also important to know how the divergences are controlled by the cut-off parameter
ε in the redefinition of mass and the coupling constant. In order to find it out, the integrals in
equations (19) and (20) should be calculated. The cut-off-dependent parameters can be given
as an asymptotic series in ε:

μ(ε)

λ2(ε)
� μR

λ2
R

+
1

8π3/2

1√
ε

as ε → 0+,

1

λ2(ε)
� 1

λ2
R

+
1

8π2
ln ε as ε → 0+.

(28)

In the above formulation, we see that as ε → 0+ the bare coupling constant squared can become
negative, especially, if the renormalized coupling is too strong. In the usual treatment, this is
an indication of the appearance of a ghost state. In our approach, this means that the cut-off
Hamiltonian becomes unbounded from below as the cut-off is removed. To make contact with
the usual perturbative renormalization, we will recast the Hamiltonian into a renormalized part
and a counterterm Hamiltonian. We will see that there are no other counterterms needed other

7
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than those existing already in the original Hamiltonian. So as to establish that, we should go
back in the calculations and replace Z(ε) by λ2

R

/
λ2(ε). The mass term of the source becomes

Z(ε)μ(ε)
1 − σ3

2
= μ(ε)

λ2(ε)
λ2

R

1 − σ3

2

= (
μR + λ2

R�μ
) 1 − σ3

2
, (29)

in which the term �μ is nothing but the divergent part in the redefinition of the mass. The
same replacement should also be done in the interaction terms, and one can get√

Z(ε)λ(ε)
[
σ+φ

(−)
ε (0) + σ−φ(+)

ε (0)
] = λR[σ+φ

(−)(0) + σ−φ(+)(0)]. (30)

The next step to perform is plug those into the Hamiltonian such that the renormalized
Hamiltonian can be determined. After plugging them, the Hamiltonian becomes

Hε =H0
[
χ+ ⊗ χ †

+ + Z(ε)χ− ⊗ χ
†
−
]

+ Z(ε)μ(ε)
1 − σ3

2
+
√

Z(ε)λ(ε)
[
σ+φ

(−)
ε (0) + σ−φ(+)

ε (0)
]

=H0
[
χ+ ⊗ χ †

+ + Z(ε)χ− ⊗ χ
†
−
]

+
(
μR + λ2

R�μ
) 1 − σ3

2
+ λR[σ+φ

(−)(0) + σ−φ(+)(0)].

(31)

We know from the theory of renormalization that if one would like to give the Hamiltonian of
the theory in terms of renormalized parameters instead of bare or cut-off parameters, then the
bare Hamiltonian is given by the renormalized Hamiltonian containing only the renormalized
parameters plus the appropriate counterterms. Therefore, if we choose the cut-off Hamiltonian
as

Hε = HR + H0[Z(ε) − 1]χ− ⊗ χ
†
− + λ2

R�μ
1 − σ3

2
, (32)

then the renormalized Hamiltonian of the theory can be given by

HR = H0
[
χ+ ⊗ χ †

+ + χ− ⊗ χ
†
−
]

+ μR

1 − σ3

2
+ λR[σ+φ

(−)(0) + σ−φ(+)(0)]. (33)

The renormalized Hamiltonian HR should not be confused with what we call the quantum
Hamiltonian HQ, which determines the time evolution of the quantum system. The resolvent
that we have found in the Fock space should correspond to the resolvent of the Hamiltonian
HQ defined in this Fock space. The existence of this Hamiltonian cannot be proved by a
straightforward application of the resolvent convergence as is done for a different model in
[20]. This question is delicate in our case. This Hamiltonian may not be written as an explicit
formula. However, its resolvent can be explicitly derived.

Although the renormalized parameters had been found, we did not complete the
renormalization. Since after regularizing the parameters by removing the divergences, there
remains a finite arbitrariness [21]. In order to fix these finite parts, which results in determining
the physical parameters of the theory, one should impose the renormalization conditions. In
perturbative field theories, these conditions should be imposed on the superficially divergent
Green’s functions to determine the coefficients of the counterterms, and one demands that
Green’s functions satisfy them order by order if these conditions are satisfied to lowest order.
In our formulation we should also specify similar conditions. In this approach, the Schrödinger
equation is replaced by the equation 
(E)� = 0. So a natural choice is that related to the
simple composite which consists of a single boson and a χ+ state giving us a dressed χ− state.
We can fix the mass difference of χ− and χ+. Therefore, we impose the following:


R(E = μp)|0〉 ≡ 0, (34)

8
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where μp is the physical mass difference. If the calculations of the principal operator are
followed backwards, one can obtain a much more compact version of the principal operator.
After a little algebra, we get


R(E) = H0 − E + μR − λ2
R

2

∫
d3p

(2π)3

[
1

ω(p)

1

H0 − E + ω(p)
− 1

ω2(p)
+

H0 − E

ω3(p)

]
+ · · · ,

(35)

where the dots stand for the normal-ordered interaction term. Incidentally, if we could expand
the first term in the integral into a power series in H0 − E, the second and the third term are
canceled, leading to a series of finite terms. If we add and subtract the second line above with
E = μp and H0 = 0, the resultant operator will satisfy the desired condition and fix the finite
part of the renormalization:


R(E)= H0 − E + μp +
λ2

R

2

∫
d3p

(2π)3

[
1

ω(p)

1

−μp + ω(p)
− 1

ω2(p)
+

−μp

ω3(p)

]

− λ2
R

2

∫
d3p

(2π)3

[
1

ω(p)

1

H0 − E + ω(p)
− 1

ω2(p)
+

H0 − E

ω3(p)

]
· · ·


R(E)= (H0 − E + μp)

{
1 +

λ2
R

2

∫
d3p

(2π)3

[
1

ω(p)[H0 − E + ω(p)][−μp + ω(p)]
− 1

ω3(p)

]}

− λ2
R

∫
d3p

(2π)3

∫
d3q

(2π)3

a†(q)√
2ω(q)

1

H0 − E + ω(q) + ω(p)

a(p)√
2ω(p)

. (36)

In section 4 we will use equation (36) to analyze the asymptotic limit of the theory with the
assistance of the asymptotic limit of the principal operator.

3. The relativistic Lee model on Riemannian manifolds

First, we will summarize the necessary tools before going into the details of the construction
of the model on Riemannian manifolds [22]. We consider a (3 + 1)-dimensional Riemannian
manifold equipped with a metric structure which is static. That is to say, there is a timelike
Killing vector field and there is a family of spacelike hypersurfaces orthogonal to the Killing
vector everywhere. Alternatively, there is a coordinate system in which not only are the metric
components gμν independent of the time coordinate, but also g0j = 0 for j 
= 0.

It is assumed that the action of a bosonic field can be given by

S =
∫

d4x
√

|g|1

2
(gμν∂μφ∂νφ − m2φ2 − ξRφ2), (37)

where ξ is a dimensionless constant, and R is the curvature scalar of the manifold. The
indefinite analog of the Laplace–Beltrami operator, the so-called wave operator obtained
through the covariant derivative, and the resulting field equations are given by, respectively,

�φ = 1√
g

∂μ[gμν√g∂νφ], (38)

�φ + (m2 + ξR)φ = 0. (39)

Since the metric is static, the field equations can be solved by separation of variables, which
results in the eigenvalue equation for the operator L:

Lφ = g00

[
1√|g|∂j (

√
|g|gjk∂kφ) + (m2 + ξR)φ

]
, (40)

9
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Lφj = ω2(j)φj , (41)

where the bosonic field decomposed as

φ(t, x) = φj (x) e∓iω(j)t . (42)

The operator L is formally self-adjoint with respect to the L2
p inner product defined through

(φ1, φ2) =
∫

d3x
√

|g|g00φ∗
1 (x)φ2(x). (43)

Any function in the Hilbert space defined by that inner product can be expanded in terms of
the solutions of equation (40), namely the eigenfunctions of that operator, as

φ(x) =
∫

dμ(j)φ(j)φj (x), (44)

where
∫

dμ(j) is the measure, and it contains a point spectrum or a discrete spectrum or both.
By means of that expansion, the scalar product defined by equation (43) can be given by

(φ1, φ2) =
∫

dμ(j)φ∗
1 (j)φ2(j). (45)

We have also the orthonormality and the completeness relations. They are

δ(j, k) =
∫

d3x
√

|g|g00φ∗
j (x)φk(x), (46)

δ(3)
g (x, x ′) =

∫
dμ(j)φ∗

j (x)φj (x
′). (47)

The general solution of the field equation can be decomposed into positive and negative parts
and they are given by, respectively,

φ(t, x) =
∫

dμ(j)√
2ω(j)

[a(j)φj (x) e−iω(j)t + a†(j)φ∗
j (x) eiω(j)t ], (48)

φ(+)(x) =
∫

dμ(j)√
2ω(j)

φj (x)a(j), (49)

φ(−)(x) =
∫

dμ(j)√
2ω(j)

φ∗
j (x)a†(j), (50)

where a(j) and a†(j) are the annihilation and the creation operator. A conjugate momentum
and a Hamiltonian should be defined in order to quantize the field canonically. The conjugate
momentum is

π(t, x) = g00
√

|g|∂0φ, (51)

and the Hamiltonian is just the Legendre transform of the Lagrangian. With the help of them,
one can calculate the equal-time canonical commutation relations both between the field and
the conjugate momentum, and then between the creation and annihilation operators:

[φ(t, x), π(t, x ′)] = i
√

|g|g00δ(3)
g (x, x ′), [a(j), a†(k)] = δ(j, k). (52)

The free Hamiltonian in terms of creation and annihilation operators is given by

H0 =
∫

dμ(j)ω(j)a†(j)a(j). (53)

Since the source is heavy and essentially sits at a point in space, one has to find a way to
describe this situation. We use the same trick which was used in [17]. The interaction is

10
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introduced by a convolution of the bosonic field with a heat kernel whose index is just a
short-time cut-off. In the limit as the cut-off goes to zero, the heat kernel becomes a Dirac
delta function and hence the convolution in this limit allows us to find the interaction occurring
at some fixed point in space. Utilizing the short-time behavior of the heat kernel is a nice
way to analyze and control the high-energy behavior of the expressions, so this allows us to
deal with the ultra-violet divergence in the theory. The cut-off Hamiltonian of the theory on a
Riemannian manifold, specified previously, is

Hε = H0
[
χ+ ⊗ χ †

+ + Z(ε)χ− ⊗ χ
†
−
]

+ Z(ε)μ(ε)
1 − σ3

2
+
√

Z(ε)λ(ε)
[
σ+φ

(−)
ε (x) + σ−φ(+)

ε (x)
]
, (54)

in which the smeared-out positive and negative frequency parts of the field are given by

φ(+)
ε (x) =

∫
d3

gx Kε/2(x, x)φ(+)(x), (55)

φ(−)
ε (x) =

∫
d3

gx Kε/2(x, x)φ(−)(x), (56)

where
∫

d3
gx ≡ ∫

d3x
√|g(x)|g00(x), x is a fixed point on the manifold, and ε/2 is chosen for

convenience.
Before carrying on, we would like to list the important properties of the heat kernel, [23],

which we will use throughout this and the following section:

Ku(x, y) = Ku(y, x), symmetry property,

LKu(x, y) = ∂

∂u
Ku(x, y), heat equation,

lim
u→0+

Ku(x, y) = δ(3)
g (x, y), initial condition,∫

M
d3

gz Ku1(x, z)Ku2(z, y) = Ku1+u2(x, y), semigroup property,

Ku(x, y) � 0 for all u, positivity.

(57)

The resolvent is again the formal inverse of the operator:

Hε − E =
[

H0 − E λ(ε)
√

Z(ε)φ(−)
ε (x)√

Z(ε)λ(ε)φ(+)
ε (x) Z(ε)[H0 − E + μ(ε)]

]
. (58)

The cut-off principal operator can be calculated algebraically by the resolvent as in the flat
case and is given by


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)φ(+)

ε (x)
1

H0 − E
φ(−)

ε (x)

}

= Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

∫
d3

gx d3
gy Kε/2(x, x)Kε/2(x, y)

×
∫

dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (y)a(j)

1

H0 − E
a†(k)

}
. (59)

Henceforth, the same game is played in order to renormalize the theory. First of all, one
should normal-order this object by letting the creation operator stand on the right and the
annihilation operator stand on the left in the fourth term in equation (59). If the following

11
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operator equalities are used:

1

H0 − E
a†(k) = a†(k)

1

H0 − E + ω(k)
, (60)

a(j)
1

H0 − E + ω(k)
= 1

H0 − E + ω(k) + ω(j)
a(j), (61)

then the principal operator becomes


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

∫
d3

gx d3
gy Kε/2(x, x)Kε/2(x, y)

×
[ ∫

dμ(j)φj (x)φ∗
j (y)

1

2ω(j)

1

H0 − E − ω(j)

+
∫

dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (y)a†(k)

1

H0 − E + ω(k) + ω(j)
a(j)

]}
. (62)

We will again use a Feynman parametrization and do an exponentiation. After that we compute
the Feynman integral as

1

ω(j)

1

H0 − E + ω(j)
=

∫ 1

0
dζ

1

[(H0 − E)ζ + ω(j)]2

=
∫ 1

0
dζ

∫ ∞

0
ds s e−sω(j) e−s(H0−E)ζ

=
∫ ∞

0
ds e−sω(j) 1

H0 − E
[1 − e−s(H0−E)]. (63)

By means of the subordination identity, ω(j) can be turned into ω2(j) which allows us
to convert e−sω2(j) into a heat kernel via sandwiching it with the eigenfunctions of the
operator L:

Ku(y, x) =
∫

dμ(j)φj (x)φ∗
j (y) e−uω2(j). (64)

Note that in some cases, especially when the scalar curvature coupling is ignored, it is more
natural to take the mass away and define a heat kernel via the Laplacian part only. We hope
that the context makes this clear in the following discussions. The reproducing identity also
allows us to combine the convoluted heat kernels as

Ku+ε(x, x) =
∫

d3
gx d3

gy Kε/2(x, x)Ku(x, y)Kε/2(y, x). (65)

If all of them are taken into account, we reach the following form of the principal operator:


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

∫
d3

gx d3
gy Kε/2(x, x)Kε/2(x, y)

×
∫

dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (y)a†(k)

1

H0 − E + ω(k) + ω(j)
a(j)

− λ2(ε)

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s e−s2/4Ku+ε(x, x)

[1 − e−s
√

u(H0−E)]√
u(H0 − E)

}
. (66)

12
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We can also exponentiate the fraction in the fourth term:

1

H0 − E + ω(k) + ω(j)
=

∫ ∞

0
ds e−sω(k) e−sω(j) e−s(H0−E). (67)

Moreover, both a(j) and a†(j) can be given by the field itself by an inverse transform:

a(j) =
√

2ω(j)

∫
d3

gz φ∗
j (z)φ

(+)(z), (68)

a†(k) =
√

2ω(k)

∫
d3

gz φk(z)φ
(−)(z). (69)

Equations (67), (68) and applying reproducing property one more time bring the principal
operator to the following form:


ε(E) = Z(ε)

{
H0 − E + μ(ε) − λ2(ε)

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s e−s2/4Ku+ε(x, x)

[1 − e−s
√

u(H0−E)]√
u(H0 − E)

− λ2(ε)

4π

∫
d3

gx d3
gy

∫ ∞

0
ds s2

∫ ∞

0
du1

e−s2/4u1

u
3/2
1

∫ ∞

0
du2

e−s2/4u2

u
3/2
2

×Kε/2+u1(x, y)Kε/2+u2(x, x)φ(−)(y) e−s(H0−E)φ(+)(x)

}
. (70)

We are now ready to renormalize the cut-off principal operator via redefining the cut-off-
dependent parameters in terms of renormalized ones and divergent parts so as to cancel the
divergences emerging from the normal ordering. As in the flat case we, first, determine which
powers of u in the u-integral produce divergence in the fourth term. In order to do that one
should use the short-time expansion of the heat kernel which generates some inverse powers
of u. We combine it with the powers of u coming from the expansion of the exponential in s.
The well-known short-time expansion of the heat kernel (see [23], for example) is given by

Ku(x, x) � 1

(4πu)d/2

∞∑
n=0

an(x)un, (71)

where an are universal polynomials in the curvature tensor, its covariant derivatives and various
contractions thereof. We choose a normalization which makes a0 is equal to 1. The mass term
in Laplacian does not affect the asymptotic expansion. It can immediately be seen that only
the first term in this short-time expansion contributes to divergences when it is combined with
the factors coming from the exponential. The following choices are sufficient to kill all the
divergences:

μ(ε)

λ2(ε)
= μR

λ2
R

+
1

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s2 e−s2/4Ku+ε(x, x)

= μR

λ2
R

+
1

2

∫ ∞

0
duKu+ε(x, x), (72)

1

λ2(ε)
= 1

λ2
R

− 1

8
√

π

∫ ∞

0
du

√
u

∫ ∞

0
ds s3 e−s2/4Ku+ε(x, x)

= 1

λ2
R

− 1√
π

∫ ∞

0
du

√
uKu+ε(x, x). (73)
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By taking the above asymptotic limits of the integrals, one can find out how the cut-off
parameter ε controls the divergences and one gets

μ(ε)

λ2(ε)
� μR

λ2
R

+
1

8π3/2

1√
ε

as ε → 0+, (74)

1

λ2(ε)
� 1

λ2
R

+
1

8π2
ln(ε) as ε → 0+. (75)

It is striking that these are exactly the same results which we have found in the flat case. This
equality arises from the fact that in this language short-time behavior captures the high-energy
behavior. Therefore, we would not expect any contribution from the geometry itself; only
the extreme local structure which is Euclidean determines the divergence. It is also easy to
conclude that point from the short-time expansion of the heat kernel since only the first term
contributes to divergences. Moreover, the first expansion coefficient a0 does not contain the
curvature scalar; it is just equal to 1. Yet, the geometry is very important for the spectrum of
the theory. The principal operator is given in terms of the heat kernel at arbitrary times as well
as its values at separate points.

After replacing the parameters by their renormalized counterparts and successively taking
the limit ε → 0+, we can obtain the renormalized principal operator, which is given by


R(E)

λ2
R

= (H0 − E)

λ2
R

+
μR

λ2
R

− 1

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s e−s2/4Ku(x, x)

1√
u(H0 − E)

×
[

1 − s
√

u(H0 − E) +
1

2
s2u(H0 − E)2 − e−s

√
u(H0−E)

]

− 1

4π

∫
d3

gx d3
gy

∫ ∞

0
ds s2

∫ ∞

0
du1

e−s2/4u1

u
3/2
1

∫ ∞

0
du2

e−s2/4u2

u
3/2
2

×Ku1(x, y)Ku2(x, x)φ(−)(y) e−s(H0−E)φ(+)(x). (76)

After imposing 
R(E = μp)|0〉 ≡ 0 and doing little algebra, one can also obtain the principal
operator in terms of physical mass difference as in the flat case:


R(E) = (H0 − E + μp)

{
1 +

λ2
R

2

∫
dμ(j)φ∗

j (x)φj (x)

×
[
− 1

ω(j)3
+

1

ω(j)[H0 − E + ω(j)][−μp + ω(j)]

]}

− λ2
R

∫
dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (x)a†(k)

1

H0 − E + ω(k) + ω(j)
a(j). (77)

We see that the renormalized Hamiltonian, after the same calculations done in the flat
case, is given by

HR = H0
[
χ+ ⊗ χ †

+ + χ− ⊗ χ
†
−
]

+ μR

1 − σ3

2
+ λR[σ+φ

(−)(x) + σ−φ(+)(x)]. (78)

4. Asymptotic limits

In this section, we will study the asymptotic behavior of the operator 
R(E) in the limit of
a large number of bosons, n → ∞, and the flat case is our starting point. Combining the
fractions in equation (36) by Feynman parametrization, exponentiating the resultant fractions,
applying the subordination identity to e−sω(p) and taking the momentum integral, successively,

14



J. Phys. A: Math. Theor. 42 (2009) 225402 B T Kaynak and O T Turgut

bring the principal operator to the following form:


R(E) = (H0 − E + μp)

{
1 +

λ2
R

32π2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds

1

s

×
∫ ∞

0
du

e−1/4u−us2m2

u3
[e−s[(H0−E)ξ−μpζ ] − 1]

}
− · · · . (79)

The u-integral is just the integral representation of the modified Bessel function of the second
kind K2(ms) multiplied with 8m2s2. After letting u → us2, calculating the u-integral and
scaling s as s → s/m, one gets


R(E) = (H0 − E + μp)

{
1 +

λ2
R

4π2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

×
∫ ∞

0
ds sK2(s)[e

−s[(H0−E)ξ−μpζ ]/m − 1]

}
− · · · . (80)

We can add and subtract e−s to the right-hand side of this expression, which regularizes the s-
integral and also generates a constant −C, which is numerically computable and approximately
equal to −2.67. Thus, the principal operator is


R(E) = (H0 − E + μp)

{
1 − C

λ2
R

4π2
+

λ2
R

4π2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

×
∫ ∞

0
ds sK2(s)[e

−s[(H0−E)ξ−μpζ ]/m − e−s]

}
− · · · . (81)

Being calculated by some mathematical software, the s-integral is equal to

5am[8a2 + (−12 +
√

2 − 2a/m)m2 − √
2m3/2

√−a + m]π

20
√

1 − a/m(m − a)[m(a + m)]3/2

− 32(a − m)(a + m)2
√−a2 + m2

3F2
(
1, 1, 5; 2, 7

2 ; a+m
2m

)
20

√
1 − a/m(m − a) [m(a + m)]3/2 , (82)

where a = (H0−E)ξ −μpζ . After converting the hypergeometric function into an elementary
function and doing some simplifications, the principal operator can be given by


R(E) = (H0 − E + μp)

{
1 − C

λ2
R

4π2
+

λ2
R

4π2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

×
[

5

3
− m̃2

(ζ − ζ̃ )(ζ − ζ̃ − 2m̃)
+

(ζ − ζ̃ − m̃)[m̃2 + 2(ζ − ζ̃ )(2m̃ − ζ + ζ̃ )]

(ζ − ζ̃ )3/2(2m̃ − ζ + ζ̃ )3/2

×
(

π − 2 arcsin

√
1 − ζ

2m̃
+

ζ̃

2m̃

)]}
− · · · , (83)

where m̃ ≡ m
μp

and ζ̃ ≡ (H0−E)ξ−m

μp
.

Whether ζ̃ is between the limits of the ζ -integral or not is important for calculating this
integral. Taking the integration interval of the ξ -integral and H � m into account tells us
that ζ̃ is in the integration interval. This could cause poles since the denominators have some
powers of ζ − ζ̃ . If this is the case, then the integral should be defined either by a principal
value prescription or by a Hadamard finite part prescription. In order to answer this question,
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one should expand the integrand around ζ = ζ̃ in series. For this expansion, a logarithmic
form of the inverse trigonometric function is more suitable:

−2 arcsin

√
1 − ζ

2m̃
+

ζ̃

2m̃
= 2i ln

⎛
⎝
√

ζ

2m̃
− ζ̃

2m̃
+ i

√
1 − ζ

2m̃
+

ζ̃

2m̃

⎞
⎠ . (84)

The series expansion of the combination of the first and the second term is

lim
ζ→ζ̃

[
5

3
− m̃2

(ζ − ζ̃ )
(
ζ − ζ̃ − 2m̃

)
]

= m̃

2(ζ − ζ̃ )
+

23

12
+

ζ − ζ̃

8m̃
+ O(ζ − ζ̃ )2, (85)

and the expansion of the third term is

lim
ζ→ζ̃

(ζ − ζ̃ − m̃)[m̃2 + 2(ζ − ζ̃ )(2m̃ − ζ + ζ̃ )]

(ζ − ζ̃ )3/2(2m̃ − ζ + ζ̃ )3/2

[
π + 2i ln

(√
ζ

2m̃
− ζ̃

2m̃
+ i

√
1 − ζ

2m̃
+

ζ̃

2m̃

)]

= − m̃

2(ζ − ζ̃ )
− 23

12
+

59(ζ − ζ̃ )

40m̃
+ O(ζ − ζ̃ )3/2. (86)

It is astonishing that not only the singular parts but also the constant parts of the integrand in
the expansion cancel each other, and that limit of the integrand is just given by

lim
ζ→ζ̃

(integrand) = 8

5m̃
(ζ − ζ̃ ) + O(ζ − ζ̃ )3/2. (87)

Although ζ̃ is between the integration limits, series expansion tells us that the ζ -integral is an
ordinary integral since the integrand does not have any poles at ζ = ζ̃ . Thus, we do not need
to introduce any prescription to compute this integral. After tedious calculations, the exact
principal operator can be obtained as


R(E) = (H0 − E + μp)

[
1 −

(
C − 7

3

)
λ2

R

4π2

]

− 2
λ2

R

4π2

√
(H0 − E − m) (H0 − E + m) ln

(√
H0 − E − m

2m
+

√
H0 − E + m

2m

)

− 2
λ2

R

4π2

√
(m − μp)(m + μp) arccos

√
m − μp

2m

− λ2
R

∫
d3p

(2π)3

∫
d3q

(2π)3

a†(q)√
2ω(q)

1

H0 − E + ω(q) + ω(p)

a(p)√
2ω(p)

. (88)

In the flat case, the asymptotic behavior of the principal operator in the limit of large
number of bosons, that is H0 � nm � m > μp, is, then, given by


R(E) � H0

[
1 −

(
C − 7

3
+ ln 2

)
λ2

R

4π

]
− λ2

R

4π
H0 ln

(
H0

m

)
− (the normal-ordered interaction term)

+ (the lower-order terms in H0). (89)

This asymptotic behavior has a striking feature, the interaction term is positive, multiplied by
a minus sign gives a negative contribution, and the leading term of the renormalized principal
operator is also negative. Whatever the leading behavior of this interaction term is, these two
terms enhance the negative value of 
R(E). We can show the positivity of the interaction
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term in general by studying the same term in the manifold case. The interaction term in
equation (76) can be written as

λ2
R

4π2

∫ ∞

0
ds s2

[∫
d3

gy

∫ ∞

0
du1

e−s2/4u1

u
3/2
1

Ku1(x, y)φ(+)(y)

]†

× e−s(H0−E)

[∫
d3

gx

∫ ∞

0
du2

e−s2/4u2

u
3/2
2

Ku2(x, x)φ(+)(x)

]

= λ2
R

4π2

∫ ∞

0
ds s2 A†(s) e−s(H0−E)A(s)︸ ︷︷ ︸

>0

. (90)

Since the integrand is positive, the interaction term is positive definite apart from the minus
sign in front. This, in turn, implies the operator to have a negative-definite sign. Henceforth,
the operator 
R(E) cannot have zero eigenvalues for E positive but much smaller than nm.
For a large number of particles this proves the positivity of the energy, which is extremely
important for the stability of the theory.

Secondly, we will analyze the behavior of the principal operator on a general ultra-static
manifold in the same limit. Having done similar calculations, equation (77) becomes ready to
be studied in the limit n → ∞:


R(E) = (H0 − E + μp)

{
1 − C(x,m)

λ2
R

4
√

π
+

λ2
R

4
√

π

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds s3

×
∫ ∞

0
du

e−um2−s2/4u

u3/2
Ku(x, x)[e−s[(H0−E)ξ−μζ ] − e−sm]

}
− · · · . (91)

Appropriate scalings of the variables in the above equation allow us to take that limit and the
operator is given by


R(E) = (H0 − E + μp)

{
1 − C(x,m)

λ2
R

4
√

π
+

λ2
R

4
√

π

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds

s3

(nm)3

×
∫ ∞

0
du

e−um2/(nm)2−s2/4u

u3/2
Ku/(nm)2(x, x)[e−s[(H0−E)ξ−μpζ ]/nm − e−sm/nm]

}
− · · · .

(92)

The asymptotic behavior of the heat kernel is given by

lim
n→∞ Ku/(nm)2(x, x) � (nm)3

(4πu)3/2
. (93)

Plugging the above equation into equation (92) allows us to take the u-integral and we get


R(E) � (H0 − E + μp)

{
1 − C(x,m)

λ2
R

4
√

π
+

λ2
R

4π2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds

s

n2
K2

( s

n

)
× [e−s[(H0−E)ξ−μpζ ]/nm − e−s/n]

}
+ · · · . (94)

We should, now, be careful about the asymptotic expansion of the integral. Although
asymptotic behavior of the function K2(s/n) can be used for s small enough, we are not
allowed to use it when s becomes comparable with n because the other multiplying factors do
not decay sufficiently fast with s. Since the upper limit of the s-integral is at infinity, this is
the case. However, if we rescale s with n, this integral takes a form which is independent of
n. Therefore, this expression becomes the same expression which we have found already in
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the previous case whose constant term C is, basically, replaced by π3/2C(x,m). If one takes
the next term in the short-time expansion of the heat kernel into account, then it can be seen
that the contribution coming from that term is of the order of 1/n2, which is much smaller and
hence neglected. Yet, there comes a contribution from the expansion of the first exponential,
which results in a new constant C ′, multiplying H0. Thus, the leading behavior of the operator

R(E) in the asymptotic limit H0 � m on a general ultra-static Riemannian manifold can be
given by


R(E) � H0

[
1 − λ2

R

4π2

(
π3/2C(x,m) + C ′ − 7

3
+ ln 2

)]
− λ2

R

4π2
H0 ln

(
H0

m

)
− (the normal-ordered interaction term)

+ (the lower-order terms in H0). (95)

At this stage, we are unable to give precise asymptotic analysis of the normal-ordered
interaction term, which requires a delicate study. We would like to call readers’ attention
to the fact that the same remarks, which have been done in the flat case, are also valid for the
relativistic Lee model defined on a general ultra-static Riemannian manifold.

At last, the manifold defined as M = R × H
3 will be considered as an example. H

3 is,
here, a three-dimensional hyperbolic space. The reason why we study this manifold is based
on the fact that its heat kernel is one of the simplest and explicitly known heat kernels.

The heat kernel of the hyperbolic space H
n, found in [24], and the diagonal heat kernel

of H
3 takes the form

Ku(x̄, x̄) = 1

(4πu)3/2
lim
ȳ→x̄

ρ(x̄, ȳ)

sinh ρ(x̄, ȳ)
e−a2u−ρ(x̄,ȳ)2/4u

= e−a2u

(4πu)3/2
, (96)

where ρ(x, y) = dist(x, y) is the geodesic distance on H
3, and −a2 is the constant sectional

curvature. Having used the diagonal heat kernel in equation (91), the following operator could
be obtained:


R(E) = (H0 − E + μp)

{
1 +

λ2
R

32π2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds s3

×
∫ ∞

0
du

e−u(m2+a2)

u3
e−s2/4u[e−s[(H0−E)ξ−μζ ] − 1]

}
+ · · · . (97)

This is the same result, which was found already in the flat case with m2 replaced by m2 + a2.
Thus, the space H

3 modifies the mass term of the exact principal operator only. After this
slight modification, the exact principal operator takes the form


R(E) = (H0 − E + μp)

[
1 −

(
C − 7

3

)
λ2

R

4π2

]

− 2
λ2

R

4π2

√
(H0 − E −

√
m2 + a2)(H0 − E +

√
m2 + a2)

× ln

⎛
⎝
√

H0 − E −
√

m2 + a2

2
√

m2 + a2
+

√
H0 − E +

√
m2 + a2

2
√

m2 + a2

⎞
⎠

− 2
λ2

R

4π2

√
(
√

m2 + a2 − μp)(
√

m2 + a2 + μp) arccos

√√
m2 + a2 − μp

2
√

m2 + a2

− (the normal-ordered interaction term). (98)
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It is easy to see the asymptotic behavior of the operator 
R(E); a simple modification is
sufficient to calculate it. Hence, one gets the following:


R(E) � H0

[
1 +

λ2
R

4π2

(
7

3
− ln 2 − C

)]
− λ2

R

4π2
H0 ln

(
H0√

m2 + a2

)
− (the normal-ordered interaction term)

+ (the lower-order terms in H0), (99)

and the normal-ordered interaction term, of course, changes drastically (see equation (76)).

5. The Lee model on (2 + 1)-dimensional Riemannian manifolds

In this section, we make a digression to an analysis of the two-dimensional version of the Lee
model. Our purpose here is two fold: we first would like to show that the two-dimensional
model is much simpler, which only requires a mass renormalization, and second, we would
like to illustrate the power of this approach by obtaining an explicit bound on the ground state
energy in each sector.

We write the model on a Riemannian manifold in the matrix form by using a heat kernel
cut-off function:

Hε − E =
[

H0 − E λφ(−)
ε (x)

λφ(+)
ε (x) [H0 − E + μ(ε)]

]
. (100)

The model now neither requires a coupling constant renormalization nor a wavefunction one.
We take the resolvent in the same way as before and find the principal operator as


ε(E) =
{
H0 − E + μ(ε) − λ2

∫
d3

gx d3
gy Kε/2(x, x)Kε/2(x, y)

×
[ ∫

dμ(j)φj (x)φ∗
j (y)

1

2ω(j)

1

H0 − E − ω(j)

+
∫

dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (y)a†(k)

1

H0 − E + ω(k) + ω(j)
a(j)

]}
. (101)

Following the same steps in the (3 + 1)-dimensional case, we end up with


ε(E) =
{
H0 − E + μ(ε) − λ2

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s e−s2/4Ku+ε(x, x)

[1 − e−s
√

u(H0−E)]√
u(H0 − E)

− λ2

4π

∫
d3

gx d3
gy

∫ ∞

0
ds s2

∫ ∞

0
du1

e−s2/4u1

u
3/2
1

∫ ∞

0
du2

e−s2/4u2

u
3/2
2

× Kε/2+u1(x, y)Kε/2+u2(x, x)φ(−)(y) e−s(H0−E)φ(+)(x)

}
. (102)

Using the behavior of the heat kernel on a two-dimensional Riemannian manifold,

Ku(x, x) � 1

(4πu)

∞∑
n=0

an(x)un, (103)

we see that the principal operator becomes finite if we define a mass renormalization given by

μ(ε) = μR +
λ2

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s2 e−s2/4Ku+ε(x, x)

= μR +
λ2

2

∫ ∞

0
duKu+ε(x, x). (104)
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As a result we find the renormalized principal operator as


R(E) = (H0 − E + μR) − λ2

4
√

π

∫ ∞

0
du

∫ ∞

0
ds s e−s2/4Ku(x, x)

1√
u(H0 − E)

× [1 − s
√

u(H0 − E) − e−s
√

u(H0−E)]

− λ2

4π

∫
d3

gx d3
gy

∫ ∞

0
ds s2

∫ ∞

0
du1

e−s2/4u1

u
3/2
1

∫ ∞

0
du2

e−s2/4u2

u
3/2
2

×Ku1(x, y)Ku2(x, x)φ(−)(y) e−s(H0−E)φ(+)(x). (105)

If we now impose the physical mass condition 
(E = μp)|0〉 = 0, written in the eigenfunction
expansion, we end up with,


R(E) = (H0 − E + μp)

{
1 +

λ2

2

∫
dμ(j)φ∗

j (x)φj (x)

×
[

1

ω(j) [H0 − E + ω(j)] [−μp + ω(j)]

]}

− λ2
∫

dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (x)a†(k)

1

H0 − E + ω(k) + ω(j)
a(j). (106)

The change in the renormalized part is important; if we recall that μp < ω(j) this part is
actually always positive for E < nm (the interesting case from the bound-state spectrum point
of view). Thus the interaction term now competes with these two terms. If we evaluate the
answer for the flat case we see that it is given by


R(E) = (H0 − E + μp) +
λ2

4π
ln

[
H0 − E + m

m − μp

]

− λ2
∫

d2p

(2π)2

∫
d2q

(2π)2

a†(q)√
2ω(q)

1

H0 − E + ω(q) + ω(p)

a(p)√
2ω(p)

. (107)

Since the flat case is sufficiently important we will give a bound on the ground state energy
for all particle sectors first, and discuss the general case of manifolds afterwards. Note that
if we can show that the principal operator becomes positive for sufficiently small values of
E, this means that it is invertible; hence, it cannot have a zero eigenvalue beyond that value.
This gives us a lower bound on the ground state energy. To accomplish this we rewrite the
principal operator in the form


R(E) = K̃(E) − U(E), (108)

where

K̃(E) = (H0 − E + μp) +
λ2

4π
ln

[
H0 − E + m

m − μp

]

U(E) = λ2
∫

d2p

(2π)2

∫
d2q

(2π)2

a†(q)√
2ω(q)

1

H0 − E + ω(q) + ω(p)

a(p)√
2ω(p)

.

(109)

Note that for real values of E, we can drop the logarithm, and the resulting operator is smaller
than K̃(E). Thus following Rajeev [14], we write an inequality of the form


R(E) > K(E) − U(E) = K(E)1/2(1 − K(E)−1/2U(E)K(E)−1/2)K(E)1/2, (110)

where K(E) = H0 + μp − E. Hence to show that the operator 
R(E) to be invertible, it
is sufficient to impose the condition ‖Ũ (E)‖ = ‖K(E)−1/2U(E)K(E)−1/2‖ < 1. This will
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impose a condition on the ground state energy. If we write this out explicitly, after commuting
the square-root operators with the creation and annihilation operators of the interaction term:

Ũ (E) = λ2
∫

d2p

(2π)2

∫
d2q

(2π)2

a†(q)√
2ω(q)

× 1

[H0 − E + μp + ω(q)]1/2[H0 − E + ω(q) + ω(p)][H0 − E + μp + ω(p)]1/2

× a(p)√
2ω(p)

. (111)

Now we can use the inequality H0 > (n − 1)m in the n boson sector inside the operator and
replacement of it results in a bigger operator function. Call this χ = (n − 1)m + μp − E and
for n > 1 we find as a result

Ũ (E) � λ2
∫

d2p

(2π)2

∫
d2q

(2π)2

× a†(q)√
2ω(q)

1

[χ + ω(q)]1/2[χ − μp + ω(q) + ω(p)][χ + ω(p)]1/2

a(p)√
2ω(p)

. (112)

If we now use an extension of the Cauchy–Schwartz inequality to the Fock-space operators,
we find

‖Ũ (E)‖ � 1

2
nλ2

[ ∫
d2p

(2π)2

∫
d2q

(2π)2

× 1

ω(q)[χ + ω(q)][χ − μp + ω(q) + ω(p)]2[χ + ω(p)]ω(p)

]1/2

. (113)

We now note that
√

p2 + m2 � |p| = p and m > μp, and replace some the terms by these
lower ones and thus preserving the direction of the inequalities:

‖Ũ (E)‖ � 1

2
nλ2

[∫
p dp d�p

(2π)2

∫
q dq d�q

(2π)2

1

pq[χ + q + p]2[χ + q][χ + p]

]1/2

. (114)

Let us scale the momenta by p = χp̄, q = χq̄, we find

‖Ũ (E)‖ � nλ2

8π2

1

χ

[∫ ∞

0

∫ ∞

0

dp̄ dq̄

[1 + q̄ + p̄]2[1 + q̄][1 + p̄]

]1/2

, (115)

and the last integral is finite; let us call its value as C, and we then impose the condition

nλ2C

8π2χ
< 1, (116)

which guaranties that ‖Ũ (E)‖ < 1. This implies the rigorous inequality on the ground state
energy:

Egr(n) � (n − 1)m + μp − λ2nC

8π2
. (117)

If we want the energy to be positive in all sectors this, in turn, brings about a bound on the
coupling constant. In fact, for global stability we should have the energy to be bounded by
(n − 2)m. But the present analysis is too crude to get a bound of this form that requires a
much more delicate analysis.

Next, we will work out the same problem for the Riemannian manifolds; it is simpler to
work on the eigenfunction expansions. We follow the same approach and estimate the leading
behavior of the term resulting from the renormalization.
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The denominator of the second term in equation (106) can be united by Feynman
parametrization as

λ2

2

∫
dμ(j)

|φj (x)|2
ω(j)[H0 − E + ω(j)][−μp + ω(j)]

= λ2

2

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫
dμ(j)

|φj (x)|2
[ω(j)(H0 − E)ξ − μpζ ]3

. (118)

After converting the fraction into an exponential, utilizing subordination identity and the
definition of the heat kernel, this term becomes

λ2

4
√

π

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds s3

∫ ∞

0
du

e−s2/4u−um2−s(H0−E)ξ+μpsζ

u3/2
Ku(x, x). (119)

Let s → s/(nm) and u → u/(nm)2, and we obtain

λ2

4
√

π(nm)3

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds s3

×
∫ ∞

0
du

e−s2/4u−u/n2−s(H0−E)ξ/(nm)+μpsζ/(nm)

u3/2
Ku/(nm)2(x, x). (120)

The asymptotic behavior of the heat kernel for large n is given by

lim
n→∞ Ku/(nm)2(x, x) � (nm)2

4πu
. (121)

After plugging this asymptotic behavior, one gets

λ2

16π3/2nm

∫ 1

0
dξ

∫ 1−ξ

0
dζ

∫ ∞

0
ds s3

∫ ∞

0
du

e−s2/4u−u/n2−s(H0−E)ξ/(nm)+μpsζ/(nm)

u5/2
. (122)

Performing the integrals results in

λ2

4π

1

(H0 − E + μp)
ln

[
H0 − E + m

m − μp

]
. (123)

Taking the overall factor (H0 − E + μp) into account, we find the same answer as that in
equation (107), and the leading contribution of the renormalization to the principal operator
in the large number of particles’ limit results in


R(E) � (H0 − E + μp) +
λ2

4π
ln

[
H0 − E + m

m − μp

]

− λ2
∫

dμ(j)√
2ω(j)

dμ(k)√
2ω(k)

φj (x)φ∗
k (x)a†(k)

1

H0 − E + ω(k) + ω(j)
a(j)

+ (smaller-order terms). (124)

The term in equation (118) is always positive, and we see that its leading term is of smaller
order. Hence this can be dropped out safely without affecting the inequalities:


R(E) > (H0 − E + μp)1/2[1 − Ũ (E)](H0 − E + μp)1/2. (125)

We will work on a noncompact manifold, for the compact manifold case the zero mode
should be worked out separately. We expand Ũ (E) in the eigenfunction basis:

Ũ (E) = λ2
∫

dμ(j) dμ(k)
a†(j)√
2ω(j)

× φ∗
j (x̄)φk(x̄)

[H0 − E + μp + ω(j)]1/2[H0 − E + ω(j) + ω(k)][H0 − E + μp + ω(k)]1/2

× a(k)√
2ω(k)

. (126)
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Here we have ω(j) =
√

σ 2
j + m2 and we introduce again χ = (n − 1)m − E (we drop μp

for simplicity). Recall that H0 � (n − 1)m; we use this inequality and the Cauchy–Schwartz
inequality to find

‖Ũ (E)‖ <
λ2n

2

[ ∫
dμ(j) dμ(k)

|φj (x̄)|2|φk(x̄)|2
ω(j)[χ + ω(j)][χ + ω(j) + ω(k)]2[χ + ω(k)]ω(k)

]1/2

.

(127)

We use the following crude inequality:

(χ + ω(j) + ω(k))2 > (χ + ω(j))(χ + ω(k)), (128)

which implies the opposite inequality for the inverse:

‖Ũ (E)‖ <
λ2n

2

[∫
dμ(j) dμ(k)

|φj (x)|2|φk(x)|2
ω(j)[χ + ω(j)]2[χ + ω(k)]2ω(k)

]1/2

<
λ2n

2

[∫
dμ(j)

|φj (x)|2
ω(j)[χ + ω(j)]2

]
. (129)

We now employ a Feynmann parametrization:

1

ω(j)[χ + ω(j)]2
=

∫ 1

0

2ζdζ

[ω(j)(1 − ζ ) + (χ + ω(j))ζ ]3
. (130)

To make contact with the heat kernel we employ an exponentiation and then use the
subordination identity to obtain

‖Ũ (E)‖ <
1√
π

∫ 1

0
dζ ζ

∫ ∞

0
ds s3

∫ ∞

0
du

[∫
dμ(j)

e−s2/4u−ω2(j)u

u3/2
|φj (x)|2

]
e−sχζ . (131)

Recognizing the heat kernel as

Ku(x, x) =
∫

dμ(j)|φj (x)|2 e−ω2(j)u, (132)

we can rewrite the desired inequality as

‖Ũ (E)‖ <
1√
π

∫ 1

0
dζ ζ

∫ ∞

0
s3 ds

∫ ∞

0
du[e−m2uKu(x, x)]

e−s2/4u

u3/2
e−sχζ . (133)

We note that for Cartan–Hadamard manifolds there is a nice inequality for the heat kernel
[24]:

Ku(x̄, x̄) � C1

u
, (134)

where C1 is a positive constant related to the geometry. This, in turn, implies for these
manifolds that

‖Ũ (E)‖ <
1√
π

∫ 1

0
dζ ζ

∫ ∞

0
s3 ds

∫ ∞

0
du e−m2u C1

u

e−s2/4u

u3/2
e−sχζ . (135)

If we drop the e−m2u term, the integral can easily be found; we scale the u variable as sv and
find

‖Ũ (E)‖ <
1√
π

∫ 1

0
dζ ζ

∫ ∞

0
ds e−sχζ

∫ ∞

0
dv

C1

v5/2
e−1/4v = C1

λ2n

χ
. (136)

If we impose the condition, C1
λ2n
χ

< 1, then we have no zeros for 
R(E), and this implies a
bound on the ground state energy:

Egr(n) > (n − 1)m − C1λ
2n. (137)
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This shows that there is a rigorous bound on the ground state energy of the n particle system.
Again, one expects that these bounds are weak, that is, a better physical approximation should
prove a better bound. Nevertheless, the bounds that we found illustrate the power of this
approach clearly.

6. Conclusion

In this paper, the construction of the relativistic Lee model on static Riemannian manifolds
is studied. This construction is, basically, based on introducing an operator, the so-called
principal operator, and renormalizing it successively [14]. Moreover, it allows us to
renormalize the theory nonperturbatively. This operator, which can be regarded as a kind
of effective Hamiltonian of the theory, converts a divergent linear problem in the Schrödinger
picture into a highly nonlinear but a well-defined problem. Since it is found through the
resolvent in the Fock space, it is valid for all particle sectors of the theory. Analysis of
the behavior of the principal operator in different regimes can allow us to obtain definite
information about the spectrum of the theory since the zero eigenvalues of the renormalized
operator implicitly determines the bound state energies. Renormalization in this construction
is established in two stages. First stage is identifying the divergences in the theory, which are
tamed by a cut-off at the beginning, and then curing them by redefinitions of the appropriate
parameters of the model. We show that the principal operator is free of divergences when
the cut-off is removed. The second stage is specifying the renormalization conditions since
there remains a finite arbitrariness in the definitions of the renormalized quantities after
regularization. Since the renormalized mass of the source μR should, intuitively, be related
to the physical mass at the lowest number of the particles sector, we believe that a natural
choice is to impose this condition on the renormalized principal operator. So we choose μp

as the lowest energy solution of the equation 
R(E)|0〉 = 0 and replace μR by this physical
parameter.

As shown, renormalization in the manifold case is much more complicated than that
in the flat case. The ultra-violet divergence in the theory is identified through the short-
time singularity of the heat kernel, the short-time expansion of the heat kernel allows us
to determine how to renormalize the bare parameters. Only the first term in the short-time
expansion contributes to the divergences, and these can be absorbed in the redefinitions of
the mass and coupling constant in 3 + 1 dimensions and the redefinition of the mass in 2 + 1
dimensions. As known, mass and coupling constant renormalizations are not sufficient to
let the theory be free of divergences, so a wavefunction renormalization is needed. To fix
the wavefunction renormalization constant, we start with a Hamiltonian in which a different
normalization of two states of the system is allowed. In that way, we do not need to change
the normalizations of the spin states after renormalization. The well-defined limit of a suitable
combination of the cut-of-dependent principal operator, coupling constant and wavefunction
renormalization constant dictates the form of the constant Z(ε). The divergence structure in
the manifold case is the same as that in the flat case. This is, actually, not a surprising result
and it stems from the fact that the divergence in the theory is an ultra-violet type. We also
analyze the model in an oblique light-front coordinate system as a case study in the appendix.
Same results are obtained, which encourages us to confirm the results found in [25].

There is another unconventional alternative, where we set the wavefunction
renormalization constant Z(ε) to −λ2

R

/
λ2(ε). This will make Z(ε) positive below a certain

value of the cut-off ε; hence the lower block of the Hamiltonian multiplied by a positive
divergent number. It will change the off-diagonal blocks into operators multiplied by an
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extra i. To make the Hamiltonian Hermitian on C
2 ⊗ FB(H), we should define it through the

operator:

Hε − E =
[

H0 − E
√

Z(ε)λ(ε)φ(−)
ε (0)√

Z(ε)λ∗(ε)φ(+)
ε (0) Z(ε)[H0 − E + μ(ε)]

]
. (138)

It is an interesting alternative to study.
In section 4, working with the (3 + 1)-dimensional model, we calculate, first, the exact

principal operator in the flat case, and then analyze the asymptotic behavior of it in the large
number of bosons’ limit. The analysis shows that the renormalization process changes the
leading term distinctively with respect to the free Hamiltonian and it takes the form −H0 ln H0.
This seems to change the dynamics of the model drastically. Therefore, one should be very
careful about how to define the quantum Hamiltonian from the constructed resolvent. Another
astonishing characteristic of this result is the sign of the leading term, which is negative. Since
the normal-ordered interaction term has also a negative-definite sign, the total operator is
negative definite. This implies that the ground state energy is positive. In [26], it is shown that
the quantum effective action of the large-N Yukawa theory also takes a similar multiplicative
contribution to the kinetic term. We, therefore, believe these results call our attentions to the
point that the quantum field theoretical models should be examined in much more detail at the
functional level.

In section 5, to show the power of this approach, we look at the (2 + 1)-dimensional
model, which only requires a mass renormalization and simplification. The model seems to
have no ghosts. The cut-off Hamiltonian is well defined. The renormalized resolvent allows
us to give a rigorous bound on the ground state. The existence of the quantum Hamiltonian
can be proved by the methods in [20] in 2 + 1 dimensions.

So far in this paper, we have addressed how to construct the relativistic Lee model on a
general static Riemannian manifold. However, the present analysis does not give adequate
information on how the spectrum of the theory can be built up. Although naı̈ve scaling
arguments for the normal-ordered interaction term in 3 + 1 dimensions suggest that it gives a
contribution of order n, a scrutiny of this contribution around the vicinity of the source hints
at a stronger dependence of n. In light of these, it is possible that the actual contribution of
the interaction term is of order n ln n, that is comparable to the term generated as a result of
the renormalization process. The detailed analysis of the principal operator, and hence the
spectrum, requires developing new approximation methods. These questions are postponed
to future works.
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Appendix

In this section, we will give a brief sketch of the construction of the Lee model and the
calculation of the principal operator in the light-front coordinate system, and will show that
the theory in this coordinate system has the same divergence structure. The following oblique
coordinate system is chosen:

u = t + x, (A.1)
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where u is the light-front time coordinate. The infinitesimal invariant distance element, the
metric tensor and its inverse are also given by

ds2 = du2 − 2 du dx − dy2 − dz2, (A.2)

gμν =

⎛
⎜⎜⎝

1 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , gμν =

⎛
⎜⎜⎝

0 −1 0 0
−1 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (A.3)

The scalar product of the coordinates and the conjugate momenta is

pμxμ = puu + px + p⊥ · x⊥, (A.4)

where x and x⊥ are the longitudinal and the transverse coordinate, and on the other hand pu, p

and p⊥ are the light-front energy, the longitudinal and the transverse momentum, respectively.
In the equal-time formulation, the bosonic field operator is given by

φ(x, x⊥) =
∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

1√
2p

[
a(p, p⊥) e−ipx−ip⊥·x⊥

+ a†(p, p⊥) eipx+ip⊥·x⊥]
. (A.5)

The equal-time commutation relations both for fields and for the creation and annihilation
operators are, respectively, given by

[φ(u, x, x⊥), φ(u, y, y⊥)] = 1
4 sgn(x − y)δ(2)(x⊥ − y⊥), (A.6)

[a(p, p⊥), a†(q, q⊥)] = (2π)3δ(p − q)δ(2)(p⊥ − q⊥). (A.7)

The free Hamiltonian of the bosonic sector is

H0 =
∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

ω(p, p⊥)a†(p, p⊥)a(p, p⊥), (A.8)

where ω(p, p⊥) = m2+p2+p2
⊥

2p
. The positive and the negative frequency parts of the fields

evaluated at the point zero are given by

φ(+)
ε (0) =

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

a(p, p⊥)√
2p

, (A.9)

φ(−)
ε (0) =

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

a†(p, p⊥)√
2p

. (A.10)

After normal-ordering the creation and annihilation operators, the principal operator takes the
form

ε(E)

λ2(ε)
= Z(ε)

{
(H0 − E)

λ2(ε)
+

μ(ε)

λ2(ε)
− 1

2

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

∫ ∞

0

dq

2π

×
∫

d2q⊥
(2π)2

1√
pq

a(p, p⊥)
1

H0 − E
a†(q, q⊥)

}

= Z(ε)

{
(H0 − E)

λ2(ε)
+

μ(ε)

λ2(ε)
−

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

1

2p

1

H0 − E + ω(p, p⊥)

−
∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

∫ ∞

0

dq

2π

∫
d2q⊥
(2π)2

1

2
√

pq
a†(q, q⊥)

× 1

H0 − E + ω(q, q⊥) + ω(p, p⊥)
a(p, p⊥)

}
. (A.11)
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We do not need to use any Feynman parametrizations here, and only an exponentiation
is enough to complete the calculations, so the momentum integral in the fourth term in
equation (A.11) is, just,∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

1

2p

1

H0 − E + ω(p, p⊥)

=
∫ ∞

ε

du

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

e−2u(H0−E)p−u(m2+p2+p2
⊥). (A.12)

At this stage, we should be careful about the limits of the angular part of the momentum
integral. Since we work in a coordinate system which covers either the future cone or the past
cone, after the following change of variables:

p2 + p2
⊥ = s2 ⇒ p = s cos θ, p⊥ = s sin θ, (A.13)

the integration interval of the θ -integral becomes [0, π
2 ]. Equation (A.12) is, then,

1

(2π)3

∫ ∞

ε

du e−m2u

∫ ∞

0
ds s2

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ e−2u(H0−E)s cos θ−us2

= 1

8(2π)2

∫ ∞

ε

du
e−m2u

u3/2

∫ ∞

0
ds s e−s2/4 1√

u(H0 − E)
[1 − e−s

√
u(H0−E)]. (A.14)

By using the exponential representation of the fractions in the fifth term in equation (A.11),
the principal operator is given by


ε(E)

λ2(ε)
= Z(ε)

{
(H0 − E)

λ2(ε)
+

μ(ε)

λ2(ε)
− 1

32π2

∫ ∞

ε

du
e−m2u

u3/2

∫ ∞

0
ds s e−s2/4 [1 − e−s

√
u(H0−E)]√

u(H0 − E)

− 2

π

∫ ∞

0
ds

∫ ∞

0
dα

∫ ∞

0
dβ

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

∫ ∞

0

dq

2π

∫
d2q⊥
(2π)2

× e−qα2−sω(q,q⊥) e−pβ2−sω(p,p⊥)a†(q, q⊥) e−s(H0−E)a(p, p⊥)

}
. (A.15)

With the help of the redefinitions of the mass and the coupling constant below

μ(ε)

λ2(ε)
= μR

λ2
R

+
1

32π2

∫ ∞

ε

du
e−um2

u3/2

∫ ∞

0
ds s2 e−s2/4, (A.16)

1

λ2(ε)
= 1

λ2
R

− 1

64π2

∫ ∞

ε

du
e−um2

u

∫ ∞

0
ds s3 e−s2/4, (A.17)

one can take the limit ε → 0+ after dividing both sides by Z(ε), and hence the renormalized
principal operator takes the form


R(E)

λ2
R

= (H0 − E)

λ2
R

+
μR

λ2
R

− 1

32π2

∫ ∞

0
du

e−m2u

u3/2

∫ ∞

0
ds s e−s2/4 1√

u(H0 − E)

×
[

1 − s
√

u(H0 − E) +
1

2
s2u(H0 − E) − e−s

√
u(H0−E)

]

− 2

π

∫ ∞

0
ds

∫ ∞

0
dα

∫ ∞

0
dβ

∫ ∞

0

dp

2π

∫
d2p⊥
(2π)2

∫ ∞

0

dq

2π

∫
d2q⊥
(2π)2

× e−qα2−sω(q,q⊥) e−pβ2−sω(p,p⊥)a†(q, q⊥) e−s(H0−E)a(p, p⊥). (A.18)

Now to see the divergence patterns, we can again calculate the bare mass and the bare coupling
constant asymptotically in ε, as a result we find the following:
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μ(ε)

λ2(ε)
� μR

λ2
R

+
1

8π3/2

1√
ε

as ε → 0+, (A.19)

1

λ2(ε)
� 1

λ2
R

+
1

8π2
ln ε as ε → 0+. (A.20)

We note that the divergences are controlled by the cut-off parameters in exactly the same
way as in the previous cases. We believe this is in accord with the discussion presented by
the authors in [25] about the equivalence of the covariant perturbation theory and the light-
front perturbation theory. This may be seen as another verification of this equivalence at a
nonperturbative level.

The asymptotic limit of the renormalized principal operator can, of course, be analyzed
in this case, as well. Because the calculations to be done for this analysis repeat themselves,
we will not continue further in this direction.

References

[1] Lee T D 1954 Phys. Rev. 95 1329
[2] Wilson K G 1965 Phys. Rev 140 B445
[3] Dittrich W 1974 Phys. Rev. D 10 1902
[4] Bender C M and Nash C 1974 Phys. Rev. D 10 1753
[5] Morris J R, Acharya R and Nigam B P 1980 Phys. Rev. D 21 2429
[6] Bender C M, Brandt S F, Chen J-H and Wang Q 2005 Phys. Rev. D 71 025014
[7] Jones H F 2008 Phys. Rev. D 77 065023
[8] Fuda M G 1983 Phys. Rev. C 27 2168
[9] Marshall J T and Pell J L 1981 Phys. Rev. D 24 394

[10] Bolsterli M 1983 Phys. Rev. D 27 2940
[11] Henley E M and Thirring W 1962 Elementary Quantum Field Theory (New York: McGraw-Hill)
[12] North G R 1967 Phys. Rev. 164 2056
[13] Nickle H H 1969 Phys. Rev. 178 2382
[14] Rajeev S G 1999 arXiv:hep-th/9902025 (unpublished)
[15] Hoppe J 1982 PhD Thesis MIT (submitted)
[16] Albeveiro S and Kurasov P 2000 Singular Perturbations of Differential Operators (Cambridge: Cambridge

University Press)
[17] Erman F and Turgut O T 2007 J. Math. Phys. 48 122103
[18] Schweber S S 1961 An Introduction to Relativistic Quantum Field Theory (New York: Harper and Row)
[19] Trubatch S L 1970 Am. J. Phys. 38 331
[20] Dimock J and Rajeev S G 2004 J. Phys. A: Math. Gen. 37 9157
[21] Itzykson C and Zuber J 1980 Quantum Field Theory (New York: McGraw-Hill)
[22] Fulling S A 1989 Aspects of Quantum Field Theory in Curved Space-Time (Cambridge: Cambridge University

Press)
[23] Rosenberg S 1997 The Laplacian on Riemannian Manifold (Cambridge: Cambridge University Press)
[24] Grigor’yan A 1995 Proc. Symp. Pure Math. 57 239
[25] Harindranath A and Perry R J 1991 Phys. Rev. D 43 492
[26] Kaynak B T and Turgut O T 2007 J. Math. Phys. 48 113501

28

http://dx.doi.org/10.1103/PhysRev.95.1329
http://dx.doi.org/10.1103/PhysRev.140.B445
http://dx.doi.org/10.1103/PhysRevD.10.1902
http://dx.doi.org/10.1103/PhysRevD.10.1753
http://dx.doi.org/10.1103/PhysRevD.21.2429
http://dx.doi.org/10.1103/PhysRevD.71.025014
http://dx.doi.org/10.1103/PhysRevD.77.065023
http://dx.doi.org/10.1103/PhysRevC.27.2168
http://dx.doi.org/10.1103/PhysRevD.24.394
http://dx.doi.org/10.1103/PhysRevD.27.2940
http://dx.doi.org/10.1103/PhysRev.164.2056
http://dx.doi.org/10.1103/PhysRev.178.2382
http://www.arxiv.org/abs/hep-th/9902025
http://dx.doi.org/10.1063/1.2813026
http://dx.doi.org/10.1119/1.1976321
http://dx.doi.org/10.1088/0305-4470/37/39/008
http://dx.doi.org/10.1103/PhysRevD.43.492
http://dx.doi.org/10.1063/1.2801883

	1. Introduction
	2. The relativistic Lee model
	3. The relativistic Lee model on Riemannian manifolds
	4. Asymptotic limits
	5. The Lee model
	6. Conclusion
	Acknowledgments
	Appendix
	References

